Course Plan II B.Tech. II Semester

Department of Computer Science and Engineering

Page 1 of 41.

IIYearIISemester

	Course	Course	E	K C		
S.No.	Code		L	Т	P/D	С
1	BS110	Probabilityand Statistics	3	-	-	3
2	EC149	Microprocessorand EmbeddedSystems	4	-	-	4
3	CS105	OperatingSystems	3	-	-	3
4	CS106	TheoryofComputation	4	1	-	4
5	CS107	WebTechnologies	4	-	-	4
6	EC150	Microprocessorand EmbeddedSystemsLab	-	-	3	2
7	CS110	OperatingSystemsLab	-	-	3	2
8	CS111	WebTechnologiesLab	-	-	3	2
9	MC101	BusinessCommunicationand Public Speaking	1	-	1	-
		Total				24

Course]	Plan
----------	------

Semester: 4 - Semester	Year: 2019
Course Title: Microprocessor and Embedded Systems	Course Code: CS150
Semester End Examination: 70	Continuous Internal Evaluation: 30
Lesson Plan Author: Mr. Y SHEKAR	Last Modified Date: 04-10-2018

Course Outcomes (COs):

- 1. Identify the general computing system and the embedded system, also recognize the classification of embedded systems.
- 2. Analyze the architecture of the processor and its programming aspects (assembly level).
- 3. Explain the ability to interface external devices with micro controllers.
- 4. Design real time embedded systems using the concepts of RTOS
- 5. Design and implement microcontroller based embedded systems.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program	n
Outcomes (POs)	

Course Outcomes (COs) / Program Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1. Identify the general computing system and the embedded system, also recognize the classification of embedded systems.	2													3
2. Analyze the architecture of the processor and its programming aspects (assembly level).		1												
3. Explain the ability to interface external devices with micro controllers.			2											
4. Design real time embedded systems using the concepts of rtos.	3													3
5. Design and implement microcontroller based embedded systems.		3												3

Course Content

Content	Hrs
Unit - 1	
Chapter No. 1 - Embedded Computing-8051 Architecture Embedded Computing: Introduction, Microprocessor, Microcontroller, Complex Systems & Microprocessor, The Embedded System Design Process, Formalisms for System Design, Design Examples. The 8051 Architecture : Introduction, 8051 Micro controller Hardware, Input/output Ports and Circuits, External Memory, Counter and Timers, Serial data Input/output, Interrupts. Unit - 2	15.00 hrs
Chapter No. 2 - Assembly Language Programming Basic Assembly Language Programming Concepts : The Assembly Language Programming Process, Programming Tools and Techniques, Programming the 8051. Data Transfer and Logical Instructions. Arithmetic Operations, Decimal Arithmetic, Jump and Call Instructions, Further Details on Interrupts.	7.00 hrs
Unit - 3	
Chapter No. 3 - Applications Applications: Interfacing with Keyboards, Displays, D/A and A/D Conversions, Multiple Interrupts, Serial Data Communication.	8.00 hrs
Unit - 4	
Chapter No. 4 - Basic Design Using a Real-Time Operationg System Basic Design Using a Real-Time Operating System :Introduction to RTOS ,Principles, Semaphores and Queues, Hard Real-Time Scheduling Considerations, Memory Management, Interrupt Routines in an RTOS Environment An example RTOS like uC-OS (Open Source); Embedded Software Development Tools: Host and Target machines, Linker/Locators for Embedded Software, Getting Embedded Software into the Target System; Debugging Techniques: Testing on Host Machine, Using Laboratory Tools, An Example System.	16.00 hrs
Unit - 5	
Chapter No. 5 - Introduction to advanced architectures Introduction to advanced architectures: ARM Processor, memory organization and Instruction level parallelism; Networked embedded systems: Bus protocols, I2C bus and CAN bus; Internet-Enabled Systems, Design Example-Elevator Controller.	7.00 hrs

TEXT BOOKS:

1. Muhammed Ali Mazidi, "The 8051 Microcontrollers and Embedded Systems", Pearson, New Delhi.

2. Kenneth J. Ayala, "The 8051 Microcontroller", 3rd Edition, Thomson.

REFERENCE BOOKS:

1. Wayne Wolf, "Computers as Components – Principles of Embedded Computing System Design", 2nd Edition, Elsevier.

- 2. Raj Kamal, "Embedded Systems", TMH.
- 3. Valvano Jonathan, "Introduction to Embedded Microcomputer Systems", Thomson.
- 4. D.V. Hall, "Micro Processor and Interfacing", Tata McGraw Hill.

Chapterwise Plan

Course Code and Title: CS150 / Microprocessor and Embedded Systems				
Chapter Number and Title: 1 - Embedded Computing-8051	Planned Hours: 15.00			
Architecture	hrs			

Learning Outcomes:-

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	Discuss about characteristics and challenges of embedded system.	CO1	L2
2	Explain the design process of Embedded System.	CO2	L3,L6
3	Illustrate the Design of Embedded System using UML.	CO1	L2
4	Explain the architecture of 8051 Micro-controller	CO1, CO2	L1
5	Understand Timers for time delays and serial communication with 8051	CO2	L2

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1.Introduction to embedded system	19-11-2018	
2.Microcomputer Architecture, Bus System and Memory, Operating system Software	22-11-2018	
3.Microprocessor : ALU, Registers, Flags, Pins	24-11-2018	
4.Difference between MC &MP,Architecture,features,	26-11-2018	
5.Complex Systems: Custom Design systems,	28-11-2018	

Characteristics of Embedded Systems		
6.Embedded System Design Process	29-11-2018	
7.Formalisms for system design	01-12-2018	
8.Design Examples: Model Train Controller, Reqirurement, Specification.	05-12-2018	
9.Architecture and Features of 8051	06-12-2018	
10.I/O Ports and Circuits of 8051	08-12-2018	
11.External Memoryof 8051	10-12-2018	
12.Timers and Countersof 8051	12-12-2018	
13.Serial Data Input/ outputof 8051	13-12-2018	
I4.Interruptsof 8051	15-12-2018	
15.Revision	17-12-2018	

Review Questions

Sl.No Questions	TLOs	BL
1.Define embedded system. Mention Characteristics of Embedded systems	1	Level-1
2.Summarize Challenges of Embedded systems	2	Level-2
3.Explain architecture of 8051 and list features.	3	Level - 2
4. Analyze various modes of timer of 8051 microcontroller.	3,4	Level-3
5.Describe various modes of serial communication in 8051	5	Level-2

Course Code and Title: CS150 / Microprocessor and Embedded Systems					
Chapter Number and Title: 2 - Assembly Language	Planned Hours: 7.00 hrs				
Programming					

Learning Outcomes:-

	Topic Learning Outcomes	COs	BL
1	Explain Assembly Language Programming Process and Tools.	CO2	L1
2	Discuss Addressing modes in 8051	CO2	L2
3	Discuss data transfer instructions	CO2	L2
4	Discuss Arithmetic, Logical and Branching instructions	CO2	L2
5	Demonstrate Programs with 8051 for developing application	CO2	L3

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1. Basic Assembly Language Programming Concepts	19-12-2018	
2. The Assembly Language Programming Process	20-12-2018	
3. Programming Tools and Techniques	22-12-2018	
4. Programming the 8051	24-12-2018	
5. Data Transfer and Logical Instructions	27-12-2018	
6. Arithmetic Operations, Decimal Arithmetic,	29-12-2018	
7. Jump and Call Instructions, Further Details on Interrupts.	2-01-2019	

Review Questions

Sl.No Questions	TLOs	BL
1. explain about basic assembly language programming process	TLO1,2	Level-2
Describe Programming Tools and Techniques,.,	2	Level-2
Perform Data Transfer and Logical Instructions with Examples	3	Level -3
Explain JUMP and CALL Instructions with Examples	4	Level-2
Perform Decimal Arithmetic using DA A with examples,	5	Level-3

Course Code and Title: CS150 / Microprocessor and Embedded Systems		
Chapter Number and Title: 3 - Applications	Planned Hours: 10.00	
	hrs	

Learning Outcomes:-

	Topic Learning Outcomes	COs	BL
1	Discuss keyboard interfacing with 8051.	CO3	Level -2
2	Demonstrate the Interfacing SSD and LCD with 8051	CO3	Level -3
3	Design the program for reading data from ADC interfacing with 8051	CO3	Level -3
4	Develop the program for generating wave form using DAC interfacing with 8051	CO3	Level -3
5	Demonstrate program for serial communication in 8051 at desired baud rate	CO3	Level -3

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1.Interfacing with keyboards: 1-row key board	3-01-2019	
2.4x4 keyboard interfacing ckt and programming	5-01-2019	
3.Displays: 7-seg LED	7-01-2019	
4.LCD interfacing ckt and programs	9-01-2019	
5.D/A Conversion	10-01-2019	
6.A/D Conversion	12-01-2019	
7.Multiple Interrupts	19-01-2019	
8.Serial-Data Communication	21-01-2019	
9.Serial-Data Communication.	23-01-2019	
10.Revision	24-01-2019	

Review Questions

Sl.No Questions	TLOs	BL
1.Discuss a program for interfacing 4x4keyboard	1,2	Level-1
2.Demonstrate the interfacing SSD	2, 3	Level-3
3.Explain the program for serial communication in mode1.	3,4	Level - 2
4.Discuss a program for interfacing LCD.	4	Level-3
5.Generate a sine wave form using DAC interfacing with 8051	4, 5	Level-6

Course Code and Title: CS150 / Microprocessor and Embedded Systems

Chapter Number and Title: 4 - Basic Design Using a Real-Time	Planned Hours: 16.00
Operationg System	hrs

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	Describe RTOS architecture	CO4	L2
2	Describe RTOS architecture	CO4	L2
3	Illustrate Methods of inter task communication	CO4	L2
4	Understanding ISRs in RTOS Environment	CO4	L2
5	Explain Debugging techniques for embedded systems	CO4	L1

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
Introduction to RTOS	26-01-2019	
Principles, Semaphores	28-01-2019	
Semaphores and Queues	30-01-2019	
Hard Real Time Scheduling Considerations	31-01-2019	
Memory Management, Interrupt routines in an RTOS Environment	02-02-2019	
Example like mc-os(open Source);	04-02-2019	
An Embedded Software Development Tools: Host and Target machines	06-02-2019	
Linker/Locators for Embedded Software	07-02-2019	
Getting Embedded Software into the Target System	09-02-2019	
Debugging Techniques: Testing on Host Machine	11-02-2019	
Using Laboratory Tools	16-02-2019	
Debugging Techniques	20-02-2019	
Revision	21-02-2019	

Sl.No Questions	TLOs	BL

1.Describe architecture of RTOS.	1,2	Level-1
2.Explain how inter task communication takes place in RTOS using message Queue	2	Level-2
3. Analyze the use of various software tools in ES development.	3	Level - 4
4.Determine memory management in RTOS	3, 4	Level-3
5.Explain the Rules of handling interrupt service in RTOs.	4, 5	Level-2

Course Code and Title: CS150 / Microprocessor and Embedded Systems						
Chapter Number and Title: 5 - Introduction to advanced architectures	Planned Hours: 8.00 hrs					

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	Discuss processor and programming model of ARM processor	CO5	L-2
2	Discuss instruction Level Parallelism in Advanced processor	CO5	L-3
3	Describe I2C and CAN Bus protocols for networked embedded systems	CO5	L-2
4	Describe Internet Enabled Embedded systems	CO5	L-2
5	Design example of elevator controller	CO5	L-3

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
Processor and memory organization of ARM & SHARC	23-02-2019	
Instruction level parallelism,	4-03-2019	
Networked embedded systems: Bus protocols,	6-03-2019	
I2C bus and CAN bus,	09-03-2019	
Internet – Enabled Systems,	11-03-2019	
Design Examples – Elevator Controller	13-03-2019	

Sl.No Questions	TLOs	BL
Explain programming model SHARC processor.	1	Level-1
Write about Instruction Level Parallelism Advanced Processors	2, 3	Level-2
Explain bus protocol for CAN Bus.	3,4	Level - 4
Explain bus protocol for 12C Bus.	4	Level-3
Write notes on internet enabled systems	4, 5	Level-2

Course Plan

Semester: 4 - Semester	Year: 2019
Course Title: Operating Systmes	Course Code: CS105
Semester End Examination: 70	Continuous Internal Evaluation: 30
Lesson Plan Author: Mr. Sandeep Chintham	Last Modified Date: 04-10-2018

Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. Exemplify the basic principles used in the design of operating systems and explain the basic elements of computer system.
- 2. Analyze critical-section problem and assess how computing resources (such as cpu, disk, memory etc...) are managed by the operating system
- 3. Summarize techniques for achieving synchronization in an operation system and develop the dead lock prevention system and recovery process from the file structures
- 4. Compare the common algorithms used for both pre-emptive and non-preemptive scheduling of tasks in operating systems, such a priority, performance comparison, and fair-share schemes.
- 5. Summarize the full range of considerations in the design of file systems and security issues

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Course Outcomes (COs) / Program Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1. Exemplify the basic principles used in the design of operating systems and explain the basic elements of computer system.	3													
2. Analyze critical-section problem and assess how computing resources (such as cpu, disk, memory etc) are managed by the operating system		2												
3. Summarize techniques for achieving synchronization in an operation system and	3													3

develop the dead lock prevention system and recovery process from the file structures								
4. Compare the common algorithms used for both pre-emptive and non- preemptive scheduling of tasks in operating systems, such a priority, performance comparison, and fair-share schemes.	2							3
5. Summarize the full range of considerations in the design of file systems and security issues	1	3						3

Course Content

Content	Hrs		
Unit – 1			
Chapter No. 1 - Computer Basic elements, Instruction execution, Interrupts, memory hierarchy, Multiprocessor and Multi-core organisation ,I/O communication techniques	3.00 hrs		
Chapter No. 2 - Operating objectives and functions, Evolution of OS, Virtual Machines ,Microsoft windows overview, Linux VServer Virtual Machine Architecture	2.00 hrs		
Chapter No. 3 - Process description and control process states, process description, process control	2.00 hrs		
Chapter No. 4 - Processes and Threads Multi-core and multi-threading. Case studies - Windows Thread and SMP Management, UNIX.			
Unit – 2			
Chapter No. 5 - Principles of concurrency mutual exclusion, semaphores, monitors, Bounded buffer problem, Readers/Writers problem	6.00 hrs		
Chapter No. 6 - Deadlocks Deadlocks – prevention- avoidance – detection, Dining Philosopher's problem	4.00 hrs		
Chapter No. 9 - Scheduling Types of scheduling – scheduling algorithms. Case studies - Windows scheduling, Linux scheduling	6.00 hrs		

Unit – 3				
Chapter No. 7 - Memory management Memory management requirements, partitioning, paging, and segmentation;	6.00 hrs			
Chapter No. 8 - Virtual memory Virtual memory -Hardware and control structures, Operating system software, Linux memory management Case studies - Windows memory management, UNIX.	8.00 hrs			
Unit – 4				
Chapter No. 10 - I/O I/O devices, organization of I/O functions; OS design issues, I/O buffering disk scheduling, RAID, Disk cache	8.00 hrs			
Unit – 5				
Chapter No. 11 - File File management – organization, directories, file sharing, record blocking, and secondary storage management. Case studies - UNIX File Management, Linux Virtual File System, and Windows File System	7.00 hrs			
Chapter No. 12 - Security Threats, Attacks, and Assets, Intruders, Malicious Software Overview - Viruses, Worms, and Bots	2.00 hrs			

Text Books (List of books as mentioned in the approved syllabus)

- 1. William Stallings, Operating Systems Internals and Design Principle, 8, Prentice Hall of India, 2014
- Silberschatz and Peter Galvin, Operating System Concepts, 9, John Wiley & Sons,, 2013

References

- 1. Andrew S. Tannenbaum and Albert S. Woodhull, Operating System Design and Implementation, 3, Prentice Hall of India, 2009
- 2. Dhamdhere, D.M, Operating System, 2, McGraw Hill
- 3. Silberschatz Abraham, Operating System Principles, 7
- 4. Madnick Stuart and John J Donovan, Operating Systems, 4, Pearson Education

Chapterwise Plan

Course Code and Title: CS105 / Operating Systems	
Chapter Number and Title: 1 - Computer	Planned Hours: 3.00 hrs

Learning Outcomes:-

	Topic Learning Outcomes	COs	BL
1	Describe the basic elements of a computer system and their interrelationship.	CO1	L2
2	Explain the steps taken by a processor to execute an instruction and understand the concept of interrupts and how and why a processor uses interrupts.	CO1	L2
3	describe the levels of a typical computer memory hierarchy and explain the basic characteristics of multiprocessor and multicore – organizations	CO1	L2
4	Explain the I/O communication techniques.	CO1	L2

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1. Computer system overview-basic elements, Instruction execution, Interrupts	19/11/2018	
2. Interrupts, memory hierarchy, Multiprocessor and Multi- core organization	20/11/2018	
3. ,I/O communication techniques	22/11/2018	

Review Questions

Sl.No Questions	TLOs	BL
1. Discuss about a firmware? NULL	TLO1	L2
2. Describe different memory hierarchy levels NULL	TLO3	L2
3. Explain instruction cycle with interrupts NULL	TLO2	L2
4. Describe various I/O communication techniques. NULL	TLO4	L2

Course Code and Title: CS105 / Operating Systems	
Chapter Number and Title: 2 - Operating	Planned Hours: 2.00 hrs

Learning Outcomes:-

	Topic Learning Outcomes	COs	BL
1	Describe key functions of an operating system (OS)	CO1	L2
2	Explain the evolution of operating systems for early simple batch	CO1	L2

	systems to modern complex systems.		
3	Describe virtual machines and virtualization	CO1	L2
4	Analyze the basic structure of Windows 7.	CO1	L4

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1. objectives and functions, Evolution of OS	26/11/2018	
2. Virtual Machines ,Microsoft windows overview,	27/11/2018	
3. Linux VServer Virtual Machine Architecture	28/11/2018	

Review Questions

Sl.No Questions	TLOs	BL
1. Define an Operating system? List its main functions	TLO1	L2
2. Explain objectives and functions of operating system.	TLO1	L2
3. Describe virtual machines and virtualization	TLO3	L2
4. Sketch and explain basic structure of Windows7	TLO4	L4
5. Explain in brief about evolution of operating systems	TLO2	L2
6. Explain the term System call? List two systems calls related file processing.	TLO1	L2

Course Code and Title: CS105 / Operating Systems	
Chapter Number and Title: 3 - Process description and control	Planned Hours: 2.00 hrs

Learning Outcomes:-

	Topic Learning Outcomes	COs	BL
1	Analyze process and process image	CO1	L4
2	Explain the concept of a process state.	CO1	L2
3	describe the purpose of the data structures and data structure elements used by an OS to manage processes	CO1	L2
4	Analyze the requirements for process control by the OS	CO1	L5

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1. process states	29-11-2018	

Review Questions

Sl.No Questions	TLOs	BL
1. Explain role of process image in operating system.	TLO1	L4
2. Discuss about the Process Control Block?	TLO4	L5
3. Explain about life cycle of a process.	TLO2	L2
4. Identify factors are effected over process termination	TLO3	L2

Course Code and Title: CS105 / Operating Systems	
Chapter Number and Title: 4 - Processes and Threads	Planned Hours: 2.00 hrs

Learning Outcomes:-

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	Analyze the characteristics of thread	CO1	L4
2	Compare user level and kernel level threads	CO1	L4
3	Analyze multi-core and multithreading	CO1	L4
4	Summarize thread models and thread issues	CO1	L2

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1. Multi-core and multi-threading	03-12-2018 – 04-12-2018	
2. Case studies - Windows Thread and SMP Management, UNIX.	05-12-2018 – 06-12-2018	

Sl.No Questions	TLOs	BL
-----------------	------	----

1. Exemplify multithreading?	TLO3	L4
2. Explain characteristics of thread.	TLO1	L4
3. Explain thread model and thread issues.	TLO4	L2
4. Compare user level and kernel level threads	TLO2	L4

Course Code and Title: CS105 / Operating Systmes		
Chapter Number and Title: 5 - Principles of concurrency	Planned Hours: 6.00 hrs	

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	Describe basic concepts related to concurrency, such as race conditions, and mutual exclusion requirements	CO2	L2
2	Explain hardware approaches to supporting mutual exclusion.	CO3	L2
3	Explain semaphores and monitors	CO3	L4
4	Determine the solution to bounded buffer and readers/writers problem.	CO3	L5

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1. Principles of concurrency	10-12-2018	
2. mutual exclusion	11/12 -12-2018	
3. semaphores	13/12/2018	
4. monitors	17/12/2018	
5. Bounded buffer problem	18/12/2018	
6. Readers/Writers problem	19/12/2018	

Sl.No Questions	TLOs	BL

1. Mention the purpose of process synchronization? Explain the mechanisms to implement process synchronization	TLO1	L2
2. Define semaphore? Explain different types of semaphores.		L4
3. Explain mutual exclusion.		L2
4. Discuss bounded buffer and readers/writers problems and Solve a problem using semaphore	TLO4	L5

Course Code and Title: CS105 / Operating Systems	
Chapter Number and Title: 6 - Deadlocks	Planned Hours: 4.00 hrs

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	Explain the conditions for deadlock occurrence	CO3	L2
2	Describe deadlock prevention strategies related to each of the conditions for deadlock occurrence.	CO3	L2
3	Apply deadlock avoidance and detection strategies	CO3	L3
4	Solve the dining philosophers problem	CO3	L3

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1. Deadlocks condition	20/12/2018	
2. Deadlocks – prevention	24/12/2018	
3. Deadlocks – avoidance	27/12/2018	
4. Deadlock detection, Dining Philosopher's problem	31/12/2018	

Sl.No Questions	TLOs	BL
1. Define deadlock and list out reasons for causing deadlock situation ?	TLO1	L2
2. What is dead lock? Explain dead lock detection mechanisms.	TLO3	L3
3. Solve Dining Philosophers problem using semaphores.	TLO4	L3

4.	Define	deadlock	prevention	and	describe	deadlock	prevention	TLO2	L2
stra	ategies re	elated to each	ch of the con	ditio	ns for dead	llock.			

Course Code and Title: CS105 / Operating Systems	
Chapter Number and Title: 7 - Memory management	Planned Hours: 6.00 hrs

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	Explain the principal requirements for memory management.	CO2	L2
2	Analyze the reason for memory partitioning and explain the various techniques that are used	CO2	L4
3	Summarize the concept of paging	CO2	L2
4	Summarize the concept of segmentation	CO2	L2

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1. Memory management requirements	02/01/2019	
2. partitioning-Fixed	03/01/2019	
3. partitioning-dynamic	07/01/2019	
4. paging	08/01/2019	
5. segmentation	09/01/2019	
6. address translation	10/01/2019	

Sl.No Questions		BL
1. List advantages and disadvantages of contiguous memory allocation	TLO1	L2
2. Explain various contiguous memory allocation schemes.		L2
3. Define paging? Explain in detail about its implementation.		L2

4. Discuss external fragmentation? Explain the technique used to	TLO2	L4
overcome it.		
5. Explain in detail about Segmentation and its implementation.	TLO4	L2

Course Code and Title: CS105 / Operating Systems	
Chapter Number and Title: 8 - Virtual memory	Planned Hours: 8.00 hrs

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	Describe the hardware and control structures that support virtual memory	CO2	L2
2	Explain TLB and paging levels.	CO2	L2
3	Describe page replacement algorithms	CO2	L2
4	Explain the virtual memory management mechanisms in UNIX, Linux and Windows 7.	CO2	L2

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1. Virtual memory -Hardware and control structures	21-01-2019	
2. Operating system software -FIFO	22-01-2019	
3. Operating system software -LRU	22-01-2019	
4. Operating system software -Optimal	23-01-2019	
5. Operating system software -Clock	23-01-2019	
6. Case studies : Linux memory management	24-01-2019	
7. Case studies : Windows memory management	28-01-2019	
8. Case studies : Unix memory management	29-01-2019	

Sl.No Questions		BL
1. Discuss Free space management.	TLO1	L2
2. Describe different paging levels.	TLO2	L2

3. Describe page replacement algorithms with suitable examples	TLO3	L2
4. Describe the virtual memory management mechanisms in UNIX	TLO4	L2

Course Code and Title: CS105 / Operating Systems	
Chapter Number and Title: 9 - Scheduling	Planned Hours: 6.00 hrs

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	Explain the differences among long-term, medium-term, and short- term scheduling.	CO4	L2
2	Discuss different CPU scheduling algorithms	CO4	L2
3	Assess the performance of different scheduling policies.	CO4	L5
4	Analyze the scheduling technique used in traditional UNIX	CO4	L4

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1. Types of scheduling	30-01-2019	
2. scheduling algorithms -FCFS ,SJF	30-01-2019	
3. scheduling algorithms-SRT ,Round robin	31-01-2019	
4. scheduling algorithms -Priority ,Multi level Feedback	04-02-2019	
5. Windows scheduling	06-02-2019	
6. Linux scheduling	07-02-2019	

Review Questions

Sl.No Questions	TLOs	BL
1. List and explain various scheduling Criteria.	TLO1	L2
2. Explain scheduling in windows7	TLO2	L2
3. Analyze the scheduling technique used in operating system	TLO4	L4
4. Assess the performance of different scheduling policies.	TLO3	L5

Course Code and Title: CS105 / Operating Systems

Chapter Number and Title: 10 - I/O	Planned Hours: 8.00 hrs
------------------------------------	-------------------------

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	Explain key issues in the design of OS support for I/O.	CO2	L2
2	Analyze the performance implications of various I/O buffering alternatives.	CO2	L3
3	Analyze the performance issues involved in magnetic disk access.	CO2	L4
4	Explain the concept of RAID and its levels	CO2	L2

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1. I/O devices	11-02-2019	
2. organization of I/O functions	11-02-2019	
3. OS design issues	12-02-2019	
4. I/O buffering	13-02-2019	
5. disk scheduling -FIFO ,SSTF SCAN	14-02-2019	
6. disk scheduling -C-SCAN ,LOOK ,C-LOOK	18-02-2019	
7. RAID	20-02-2019	
8. Disk Cache	20-02-2019	

Sl.No Questions	TLOs	BL
1. Apply any two disk scheduling algorithms (SCAN & C-CSAN) for following I/O request here 98, 183, 37, 122, 14, 124, 65, 67 (assume initial head position is at 52).	TLO3	L4
2. Discuss RAID levels in detail and the problems associated with RAID.	TLO4	L2
3. List and explain important parameters regarding disk operations	TLO1	L2
4. Explain IO buffering in detail.	TLO2	L3

Course Code and Title: CS105 / Operating Systmes	
Chapter Number and Title: 11 - File	Planned Hours: 7.00 hrs

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	Describe the basic concepts of files and file systems.	CO5	L2
2	Analyze the principal techniques for file organization and access	CO5	L4
3	Explain the concept of file directories, file sharing and record blocking.	CO5	L2
4	Describe the principal design issues for secondary storage management	CO5	L2

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1. organization	11-02-2019	
2. directories	26-02-2019	
3. file sharing, record blocking	27-02-2019	
4. secondary storage management - Contiguous File Allocation	28-02-2019	
5. Chained Allocation ,Indexed allocation	05-03-2019	
6. Free Space Management	06-03-2019	
7. Case studies - UNIX File Management, Linux Virtual File System, and Windows File System	07-03-2019	

Review Questions

Sl.No Questions		BL
1. Discuss the file system implementation in UNIX.	TLO1	L2
2. Explain various file accessing methods	TLO2	L4
3. Explain Swap-space management	TLO3	L2
4. Discuss about file allocation methods	TLO4	L2

Course Code and Title: CS105 / Operating Systmes

Chapter Number and Title: 12 - Security	Planned Hours: 2.00 hrs
---	-------------------------

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	Assess the key security issues that relate to operating systems.	CO5	L5
2	Summarize the design issues for file system security	CO5	L2
3	Distinguish among various types of intruder behaviour patterns.	CO5	L2
4	Explain the types of intrusion techniques used to breach computer security.	CO5	L2

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1. Threats	11-03-2019	
2. Attacks, and Assets	11-03-2019	
3. Intruders	11-03-2019	
4. Viruses	12-03-2019	
5. Worms and Bots	12-03-2019	

Sl.No Questions	TLOs	BL
1. Explain the fields in each log record?	TLO1	L5
2. Define System threats? Explain threat monitoring	TLO2	L2
3. Define virus and explain in detail about type of viruses.	TLO3	L2
4. Explain in detail about intrusion detection system	TLO4	L2

Course Plan

Semester: 4 - Semester	Year: 2019
Course Title: Theory of Computation	Course Code: 106
Semester End Examination: 70	Continuous Internal Evaluation: 30
Lesson Plan Author: Mr. NagendarYamsani	Last Modified Date: 04-10-2018

Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. Apply the grammars and languages to abstract computer machines and analyze the lemma's, hypothesis for various languages
- 2. Design the logic and solutions to decidable and undecidable problems through computability theory
- 3. Design deterministic, non-deterministic and push down automata's and turing machines
- 4. Identify and explain different types of chomsky hierarchy of languages and their capabilities
- 5. Apply interconversion of languages to grammars and grammars to automata

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Course Outcomes (COs) / Program Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1. Apply the grammars and languages to abstract computer machines and analyze the lemma's, hypothesis for various languages	3	3												
2. Design the logic and solutions to decidable and undecidable problems through computability theory			3											
3. Design deterministic, non-deterministic and push down automata's and turing machines	3													3
4. Identify and explain different types of chomsky hierarchy of languages and their capabilities	3													

5. Apply interconversion	3						
of languages to grammars							
and grammars to							
automata							

Course Content

Content	Hrs
Unit - 1	i
 Chapter No. 1 - Fundamentals Fundamentals: Strings, Alphabet, Language, Operations, Finite state machine, definitions, finite automaton model, acceptance of strings, and languages, deterministic finite automation and non-deterministic finite automaton, transition diagrams and Language recognizers.Finite Automata: NFA with Î transitions - Significance, acceptance of languages. Conversions and Equivalence: Equivalence between NFA with and without Î transitions, NFA to DFA conversion 	14.00 hrs
Unit - 2	-
Chapter No. 2 - Minimisation Minimization: Minimization of FSM, equivalence between two FSM's, Finite Automata with output- Moore and Mealy machines.Regular Languages: Regular sets, regular expressions, identity rules, Constructing finite Automata for a given regular expressions, Conversion of Finite Automata to Regular expressions. Pumping lemma of regular sets, closure properties of regular sets (proofs not required)	12.00 hrs
Unit - 3	
Chapter No. 3 - Grammar Formalism & Context Free Grammars Grammar Formalism: Regular grammars-right linear and left linear grammars, equivalence between regular linear grammar and FA, interconversion, Context- free grammar, derivation trees, sentential forms. Rightmost and leftmost derivation of strings.Context Free Grammars: Ambiguity in context-free grammars. Minimisation of Context-Free Grammars. Chomsky normal form, Greiback normal form, Pumping Lemma for Context-Free Languages. Enumeration of properties of CFL (proofs omitted)	16.00 hrs
Unit - 4	•
Chapter No. 4 - Push Down Automata & Turing Machine Push Down Automata: Push down automata, definition, model, acceptance of CFL, Acceptance by final state and acceptance by empty state and its equivalence. Equivalence of CFL and PDA, interconversion. (Proofs not required). Introduction to DCFL and DPDA.Turing Machine: Turing Machine, definition, model, design of TM, Computable functions, recursively enumerable languages. Church's hypothesis, counter machine, types of Turing machines (proofs not required).	14.00 hrs

Unit - 5	
Chapter No. 5 - Computability Theory	8.00 hrs
Computability Theory: Chomsky hierarchy of languages, linear bounded automata	
and context-sensitive language, LR(0) grammar, decidability of, problems,	
Universal Turing Machine, undecidability of posts. Correspondence problem,	
Turing reducibility, Definition of P and NP problems.	

Text Books (List of books as mentioned in the approved syllabus)

- 1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, 2, Pearson Education, 2008
- 2. Michael Sipser, Introduction to Theory of Computation, 2, Cengage Learning, 2012

References

- 1. Daniel I. A. Cohen, Introduction to Computer Theory, 2, Wiley, 2007
- 2. John Martin, INTRODUCTION TO LANGUAGES AND THE THEORY OF COMPUTATION, 3, McGraw-Hill, 2007
- 3. K.I.P. MISHRA, N. CHANDRASEKARAN, Theory of Computer Science: Automata, Languages and Computation, 3, Phi Learning, 2008
- 4. Ev Krishnamurthy, Sk Sen, Introductory Theory Of Computer Science, 2, Affiliated East-West Press Pvt Ltd, 2004

Chapterwise Plan

Course Code and Title: 106 / Theory of Computation					
Chapter Number and Title: 1 - Fundamentals	Planned Hours: 14.00				
	hrs				

Learning Outcomes:-

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	Explain the fundamentals of strings, languages and its operations	CO1	L2
2	Illustrate automata for a language acceptance	CO1	L2
3	Design the automata for the acceptance of a language	CO3	L6
4	Match the equivalence of NFA to DFA, automata to language	CO5	L2

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1. Introduction, Strings, Alphabet, Language, Operations	19-11-2018	
2. Finite state machine, definitions	20-11-2018	
3. finite automaton model	22-11-2018	

4. acceptance of strings, and languages	26-11-2018
5. Deterministic Finite Automaton	27-11-2018
6. Non Deterministic Finite Automaton	28-11-2018
7. Transition Diagrams	29-11-2018
8. Language Recognizers	30-11-2018
9. NFA with Î transitions	03-12-2018
10. Significance of NFA	04-12-2018
11. acceptance of languages for NFA	05-12-2018
12. Conversions and Equivalence	06-12-2018
13. Equivalence between NFA with and without \hat{I} transitions	07-12-2018
14. NFA to DFA conversion	10-12-2018

Review Questions

Sl.No Questions	TLOs	BL
1. Explain Levi's theorem on string concatenation operaion?	TLO1	L2
2. Summarize the characteristics of automata with a neat abstract diagram	TLO2	L2
3. Construct a FA to accepts binary strings which are having even number of 0's and odd number of 1's	TLO3	L6
4. Distinguish NFA and DFA	TLO4	L2

Course Code and Title: 106 / Theory of Computation	
Chapter Number and Title: 2 - Minimization	Planned Hours: 12.00 hrs

Learning Outcomes:-

	Topic Learning Outcomes	COs	BL
1	Illustrate minimization of FSM	CO3	L2
2	Explain Moore and Melay Machines	CO3	L2
3	Compute to automata to regular expression and vice versa	CO5	L3
4	Explain Pumping lemma on regular sets, closure properties of regular sets	CO1	L2

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
15. minimization of FSM	12-12-2018	
16. minimization of FSM (alternate method)	13-12-2018	
17. equivalence between two FSM's	14-12-2018	
18. Finite Automata with output- Moore Machines	17-12-2018	
19. Finite Automata with output- Melay Machines	18-12-2018	
20. Inter conversion of Moore and Melay Machines	19-12-2018	
21. Regular Sets, Regular Expressions	20-12-2018	
22. Identity Rules	21-12-2018	
23. Constructing finite Automata for a given regular expressions	24-12-2018	
24. Conversion of Finite Automata to Regular expressions	27-12-2018	
25. Pumping lemma of regular sets	28-12-2018	
26. closure properties of regular sets	31-12-2018	

Review Questions

Sl.No Questions	TLOs	BL
1. Explain the procedure for minimization of FSM	TLO1	L2
2. Classify automata with outputs with examples	TLO2	L2
3. Convert the regular expression $0^{*}(1+0)^{*}10^{*}01$ into Finite automata	TLO3	L3
4. Explain the application of pumping lemma for regular sets or languages	TLO4	L2

Course Code and Title: 106 / Theory of Computation	
Chapter Number and Title: 3 - Grammar Formalism & Context	Planned Hours: 16.00
Free Grammars	hrs

Learning Outcomes:-

	Topic Learning Outcomes	COs	BL
1	Explain regular grammar and inter conversion of grammar to finite automata	CO5	L2

2	Illustrate derivation trees of CFG .	CO1	L2
3	Solve the minimization of CFG	CO3	L3
4	Apply the pumping lemma to test a grammar is CFG.	CO1	L3

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
27. Regular grammars	03-01-2019	
28. right linear and left linear grammars	04-01-2019	
29. equivalence between regular linear grammar and FA	07-01-2019	
30. inter conversion of regular grammar and FA	08-01-2019	
31. Context free grammar, derivation trees	09-01-2019	
32. Sentential forms. Right most derivation of strings. Leftmost derivation of strings.	10-01-2019	
33. Ambiguity in context free grammars	11-01-2019	
34. Minimization of Context Free Grammars (introduction)	21-01-2019	
35. Minimization of Context Free Grammars (elimination of useless symbols and productions)	22-01-2019	
36. Minimization of Context Free Grammars (elimination of NULL productions)	23-01-2019	
37. Minimization of Context Free Grammars (elimination of UNIT productions)	24-01-2019	
38. Chomsky normal form	25-01-2019	
39. Greiback normal form for non recursive CFG	28-01-2019	
40. Greiback normal form for recursive CFG	29-01-2019	
41. Pumping Lemma for Context Free Languages	30-01-2019	
42. Enumeration of properties of CFL	31-01-2019	

Sl.No Questions	TLOs	BL
1. Match the regular grammar to accepts the binary strings which are start by 0 and end with 10	TLO1	L2
2. Explain the procedure to test the context free grammar is ambiguous or not with an example	TLO2	L2
3. Eliminate the productions in a grammar G whose productions are S - $>aS AB, A -> \varepsilon, B -> \varepsilon, D -> b$	TLO3	L3

4. Solve that $L=\{anbncn \mid n \ge 1\}$ is not context free	TLO4	L3
---	------	----

Course Code and Title: 106 / Theory of Computation	
Chapter Number and Title: 4 - Push Down Automata & Turing	Planned Hours: 14.00
Machine	111 5

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	Construct a PDA for the given CFG	CO5	L6
2	Explain DCFL, DPDA, and interconversion of CFL to PDA	CO5	L2
3	Design TM for the given language or grammar	CO3	L6
4	Explain computable functions Church's hypothesis, counter machine, types of Turing machines	CO2	L2

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
43. Push down automata, definition, model	04-02-2019	
44. acceptance of CFL	05-02-2019	
45. Acceptance by final state	06-02-2019	
46. acceptance by empty state and its equivalence	07-02-2019	
47. Equivalence of CFL and PDA	08-02-2019	
48. CFL and PDA interconversion	11-02-2019	
49. Introduction to DCFL	12-02-2019	
50. Introduction to DPDA	13-02-2019	
51. Turing Machine, definition, model, design of TM	14-02-2019	
52. Computable functions	15-02-2019	
53. recursively enumerable languages	18-02-2019	
54. Church's hypothesis	19-02-2019	
55. counter machine	20-02-2019	
56. types of Turing machines	21-02-2019	

Sl.No Questions	TLOs	BL
1. Construct the PDA for the CFG S->0S0 1S1 0 1	TLO1	L6
2. Classify PDA into DPDA and NPDA with examples	TLO2	L2
3. Design TM for $L = \{anb2n \mid n > 0\}$	TLO3	L6
4. Illustrate Church's hypothesis\n\n\n	TLO4	L2

Course Code and Title: 106 / Theory of Computation	
Chapter Number and Title: 5 - Computability Theory	Planned Hours: 8.00 hrs

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	Classify Chomsky hierarchy of languages	CO4	L4
2	Explain LBA model for CSG	CO5	L2
3	Illustrate Post Correspondence Problem, Universal Turing Machine	CO2	L2
4	Apply Turing reducibility, P and NP problems	CO2	L3

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
57. Chomsky hierarchy of languages	25-02-2019	
58. linear bounded automata	26-02-2019	
59. context sensitive language, LR(0) grammar	27-02-2019	
60. decidability of problems	28-02-2019	
61. Universal Turing Machine	01-03-2019	
62. undesirability of posts, Correspondence problem	05-03-2019	
63. Turing reducibility	06-03-2019	
64. Definition of P and NP problems, NP complete and NP hard problems.	07-03-2019	

Sl.No Questions	TLOs	BL
1. Classify Chomsky hierarchy of languages with examples	TLO1	L4
2. Explain the relation between LBA and CSG	TLO2	L2
3. Explain Universal Turing Machine	TLO3	L2

4. Explain the importance of NP Complete problems	TLO4	L3

Course Plan

Semester: 4 - Semester	Year: 2019
Course Title: Web Technologies	Course Code: CS107
Semester End Examination: 70	Continuous Internal Evaluation: 30
Lesson Plan Author: Mr. Sampath Kumar Tallapally	Last Modified Date: 04-10-2018

Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. Create a website using html5 and add dynamic functionality to it by using javascript, css&xhtml
- 2. Implement three tier architecture using servlets and jsp.
- 3. Organizing jsp for dynamic web development applications
- 4. Apply jdbc knowledge to make connection to various connections
- 5. Recite ejb and struts' for web development applicationsandbuild dynamic websites on real world problems.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Course Outcomes (COs) / Program Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1. 1. create a website using html5 and add dynamic functionality to it by using javascript, css&xhtml	3	3	3	2		2	2	2					2	3
2. 2. implement three tier architecture using servlets and jsp.	3	3	3			2		2					3	3
3. 3. organizing jsp for dynamic web development applications	3	3	3	2		2				2			3	3
4. 4. apply jdbc knowledge to make connection to various connections	3	3	3		1	2	2						3	3
5. 5. recite ejb and struts' for web development applications	3	3	3		1					2			3	3
6. 6. build dynamic websites on real world	3	3	3				2						3	3

Page 34 of 41.

	r	-	-	-	-			-	
problems.									
1									

Course Content

Content	Hrs				
Unit – 1					
Chapter No. 1 - Intoduction to WT,HTML and XML Introduction to web technologies, Need of it, different types available,Basic Tags of HTML,Tables, div, span,Forms-Controls (button,textfield,check,radio,list etc.,),Controlling Page Layout, Backgrounds, borders, colours, and text, Transformations and Animations, Media Tags,Introduction to XML, Structure of XML Document,Name Spaces in XML,DTD and Scheme.	9.00 hrs				
Unit – 2					
Chapter No. 2 - Introduction to JavaScript Introduction to JavaScript, Declaring variables and arrays, Using operators and expressions Loops and decision-making constructs Alert, confirmation and prompt boxes, Regular expressions, JavaScript Functions JavaScript Objects, Event- handling jQuery introduction The jQuery ready Function, jQuery Selectors jQuery and DOM jQuery and Events, jQuery UI: jQuery UI overview Interactive Personal web Site with Validations	9.00 hrs				
Unit – 3					
Chapter No. 3 - Overview of AJAX Overview of AJAX Creating an XML Http Request object interacting with a server Handling XML and JSON Angular JS Introduction Expressions Data Biding Working with Directives Controllers and Forms Design a search engine with the help of AJAX, XML and JSON	10.00 hrs				
Unit – 4					
Chapter No. 4 - Introduction to the JDBC Introduction to the JDBC JDBC Drivers, Connections Statements and Result Set Introduction to Servlets Servlet Life Cycle, Servlet Types Session Management- Using Cookies Using Sessions JDBC-Servlet Design web application to store the data read from the user to the database using Servlets	10.00 hrs				
Unit – 5					
Chapter No. 5 - Introduction to JSP Introduction to JSP JSP Life Cycle JSP Elements Implicit Objects Session Tracking JDBC-JSP Bean Creation JDBC-Bean Introduction to Struts Framework Design a web application to authenticate the user the data stored in the database with JSP	10.00 hrs				

Course Code and Title: CS107 / Web Technologies	
Chapter Number and Title: 1 - Introduction to WT,HTML and XML	Planned Hours: 9.00 hrs

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	Design a personal webpage using HTML	CO1	L2,L3,L4
2	Design a personal webpage to store the details of an Individual into xml	CO3	L3

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1. Introduction to web technologies, Need of it, different types available	19/Nov/2018	
2. Basic Tags of HTML	20/11/2018	
3. Tables, div, span	21/11/2018	
4. Forms-Controls (button,textfield,check,radio,list etc.,)	22/11/2018	
5. Controlling Page Layout, Backgrounds, borders, colors, and text, Transformations and Animations	24/11/2018	
6. Media Tags	26/11/2018	
7. Introduction to XML, Structure of XML Document,	27/11/2018	
8. Name Spaces in XML	28/11/2018	
9. DTD and Scheme	29/11/2018	
10. Design a personal webpage to store the details of an Individual into xml	3/12/2018	
Review Questions		<u> </u>

Sl.No Questions	TLOs	BL
1. Differentiate between id and class attributes in html with an example	TLO1	L1
2. Create a web page which accepts user details for creating a website.	TLO2	L3
3. Write an XML document for storing the details of an employee with DTD.	TLO3	L3

4. When we use NameSpaces and attributes for XML tags. TLO2	L2
---	----

Course Code and Title: CS107 / Web Technologies	
Chapter Number and Title: 2 - Introduction to JavaScript	Planned Hours: 9.00 hrs

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	Introduction to JavaScript, Declaring variables and arrays, Using operators and expressions Loops and decision-making constructs Alert, confirmation and prompt boxes, Regular expressions, JavaScript Functions	CO2	L2
2	Interactive Personal web Site with Validations	CO3	L3,L4

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1. Introduction to JavaScript, Declaring variables and arrays, Using operators and expressions	4/12/2018	
2. Loops and decision-making constructs	5/12/2018	
3. Alert, confirmation and prompt boxes, Regular expressions,	6/12/2018	
4. JavaScript Functions	7/12/2018	
5. JavaScript Objects, Event-handling	10/12/2018	
6. jQuery introduction	11/12/2018	
7. The jQuery ready Function, jQuery Selectors	12/12/2018	
8. jQuery and DOM	13/12/2018	
9. jQuery and Events, jQuery UI: jQuery UI overview	14/12/2018	
10. Interactive Personal web Site with Validations	17/12/2018	

Sl.No Questions	TLOs	BL
1. Identify the implicit objects in java script	TLO1	L1

2. Why we need JQuery-Write a short note on JQuery Selectors.	TLO2	L2
3. Write a short note on JQuery-DOM	TLO3	L3
4. Define FA with example.	TLO4	L1
5. Construct optimization of FA	TLO4	L3

Course Code and Title: CS107 / Web Technologies	
Chapter Number and Title: 3 - Overview of AJAX	Planned Hours: 10.00
	hrs

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	Creating an XML Http Request object, Handling XML and JSON	CO3	L3,L4
2	Design a search engine with the help of AJAX, XML and JSON	CO4	L3,L4

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1. Creating an XML Http Request object	18/12/2018	
2. Overview of AJAX	20/12/2018	
3. interacting with a server	21/12/2018	
4. Handling XML and JSON	22/12/2018	
5. Angular JS Introduction	2/1/2019	
6. Expressions	3/1/2019	
7. Data Biding	4/1/2019	
8. Working with Directives	5/1/2019	
9. Controllers and Forms	6/1/2019	
10. Design a search engine with the help of AJAX, XML and JSON	7/1/2019	

Sl.No Questions	TLOs	BL
1. Descibe the methods on XMLHttpRequest with syntax.	TLO1	L1

2. How we handle data using JSON give an example.	TLO2	L1
3. Explain Data Binding in AngularJS.	TLO2	L2
4. Name the Controllers available in AngularJS.	TLO3	L3

Course Code and Title: CS107 / Web Technologies	
Chapter Number and Title: 4 - Introduction to the JDBC	Planned Hours: 10.00
	hrs

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	JDBC Drivers, Connections, Servlets Session Management- Using Cookies	CO5	L3,L4
2	Design web application to store the data read from the user to the database using Servlets	CO6	L3,L4

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1. Introduction to the JDBC	8/1/2019	
2. JDBC Drivers, Connections	9/1/2019	
3. Statements and Result Set	10/1/2019	
4. Introduction to Servlets	21/1/2019	
5. Servlet Life Cycle,	22/1/2019	
6. Servlet Types	23/1/2019	
7. Session Management- Using Cookies	24/1/2019	
8. Using Sessions	28/1/2019	
9. JDBC-Servlet	29/1/2019	
10. Design web application to store the data read from the user to the database using Servlets	30/1/2019	

Sl.No Questions	TLOs	BL
1. Identify the Drivers available for extracting the data from data	TLO1	L1

bases		
2. Name the methods used for extracting and updating a table.	TLO2	L1
3. Differentiate GenericServlet and HTTPServlet.	TLO2	L2
4. How session management is achieved in servlet explain any one	TLO3	L3

Course Code and Title: CS107 / Web Technologies	
Chapter Number and Title: 5 - Introduction to JSP	Planned Hours: 10.00 hrs
	hrs

At the end of the topic the student should be able to:

	Topic Learning Outcomes	COs	BL
1	Beans application, JDBC – Bean	CO5	L3
2	Design a web application to authenticate the user the data stored in the database with JSP	CO4	L3

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date	Actual Delivery Date
1. Introduction to JSP	1/2/2019	
2. JSP Life Cycle	2/2/2019	
3. JSP Elements	4/2/2019	
4. Implicit Objects	5/2/2019	
5. Session Tracking	6/2/2019	
6. JDBC-JSP	7/2/2019	
7. Bean Creation	8/2/2019	
8. JDBC-Bean	11/2/2019	
9. Introduction to Struts Framework	12/2/2019	
10. Design a web application to authenticate the user the data stored in the database with JSP	13/2/2019	

Sl.No Questions TLOs B	.Os BL
------------------------	--------

1. Explain the life cycle of an JSP.	TLO1	L1
2. Identify the implicit objects of JSP.	TLO2	L1
3. How to use a java bean in JSP explain with a small example.	TLO2	L2
4. Draw a neat sketch of strut architecture.	TLO3	L3